TOPIC PLAN

Partner organizatio \mathbf{n}	University ‘Goce Delcev' - Stip
Topic	Calculus
Lesson title	Optimization problems
Learning objectives	We use tools from calculus to solve optimization problems. This includes:
$-\quad$Find first and second derivative of a function - $-\quad$ Find the critical numbers of the function Apply first and second derivative test to identify the extrema of the function	

Aim of the lecture / Descriptio

The aim of the lecture is to apply calculus tools in finding the best solution from all feasible solutions. We consider practical problems from geometry, economics and real life applications. practical problem

The first practical problem is about maximizing the amount of light going through a window with given shape. In fact, the problem is about maximizing the area of a shape with given constraints.
Problem 1 The upper side of a rectangular window is surmounted by a semicircle (so called Norman window). Thus, the diameter of the semicircle is equal to the width of the rectangle. If the perimeter of the rectangle is 10 m , find the dimensions of the window so that the greatest possible amount of light is admitted.

Strategies/A ctivities

\square Graphic
Organizer
Think/Pair/Sh
are
\square Modeling
\square Collaborati
ve learning
-Discussion
questions
\square Project based learning
\square Problem based learning

Assessment for learning \square Observatio ns
\square Conversati ons
\square Work sample \square Conference \square Check list \square Diagnostics
"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^0]| Previous knowledge assumed: | - Critical point of a continuous function
 - Local and absolute maxima and minima
 - First and second derivative of a function
 - Derivative tests
 - Elementary fact and results from Geometry
 - Basic facts from kinematics (distance, time, velocity) |
| :---: | :---: |
| Introductio n / Theoretical basics | In science, engineering and business one is often interested in problems that involve finding the absolute maximum value or the absolute minimum value of a function. For example, a company is naturally interested in maximizing revenue while minimizing cost. The calculus tools can be used to solve such optimization problems. We note that statement of the problem does not usually include the function that is to be optimized. It is our task of first setting up the function that is to be maximized or minimized and then finding its absolute extremum.
 Steps in solving Optimization Problems
 1.Understand the Problem The first step is to read the problem carefully until it is clearly understood. Ask yourself: What is the unknown? What are the given quantities? What are the given conditions?
 2. Draw a Diagram In most problems it is useful to draw a diagram and identify the given and required quantities on the diagram.
 3. Introduce Notation Assign a symbol to the quantity that is to be maximized or minimized, for example Q. Select symbols for other unknown quantities and label the diagram with these symbols. It may help to use initials as suggestive symbols - for example, A for area, h for height, t for time.
 We consider first some optimization problems from geometry.
 4. Express Q in terms of some of the other symbols from Step 3.
 5. If Q has been expressed as a function of more than one variable in Step 4, use the given information to find |

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

	relationships (in the form of equations) among these variables. Then use these equations to eliminate all but one variable in the expression for Q. Thus, Q will be expressed as a function of one variable, say $x, Q=f(x)$. Write the domain of this function. 6. Use the tools from calculus to find the absolute maximum or minimum value of f.
Following these steps, now we are ready to give the solutions of the two practical problems	
Solution of Problem $1:$	
By x we denote the radius of the semicircle and by $2 y$ its	
height. We have $y=\frac{5}{2}-x$. The greatest amount of light comes	
in, if the function of the surface	
$f(x)=4 x y+\frac{\pi x^{2}}{2}=4 x\left(\frac{5}{2}-x\right)+\frac{\pi x^{2}}{2}$	

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

	reaches maximum. The derivative is $f^{\prime}(x)=10-8 x+\pi x$, hence the only critical number is $x=\frac{10}{8-\pi}$. $f^{\prime \prime}(x)=-8+\pi<0$, we have a maximum at the critical number $x=\frac{10}{8-\pi}$ The window has therefore width $\frac{20}{8-\pi}=4.12 \mathrm{~m}$ and height $\frac{20-5 \pi}{8-\pi}=0.88 \mathrm{~m}$.
Solution of Problem $2:$	

[^1]
"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

We give more examples of optimization problems.

Area and Cost Optimization

Example 1. Maximizing Area

Of all triangles with given perimeter $2 s$ and one side with fixed length a, find the triangle with largest area.
Solution. Let us denote the sides of the other two sides of the triangle with a and b. We know that by Heron's formula its area A is given by

$$
A=\sqrt{s(s-a)(s-b)(s-c)} .
$$

We put $b=x$, then $2 s=a+x+c$ and therefore $s-c=a+x-s$. Thus we can write the area A in the form

$$
Q=f(x) \quad A=\sqrt{s(s-a)(s-x)(a+x-s)} .
$$

This function has a maximum in the same points where the function

$$
f(x)=(s-x)(a+x-s)
$$

has a maximum. It holds

$$
(s-x)+(a+x-s)=a,
$$

and we know that the product of two numbers with fixed sum is the largest when they are equal. Indeed, the function

$$
g(x)=x(a-x)
$$

has as the only critical point the zero $x=a / 2$ of the derivative

$$
g^{\prime}(x)=a-2 x .
$$

Since $g^{\prime \prime}(x)=-2<0$, the function $g(x)=x(a-x)$ has maximum at $x=a / 2$.
Hence, in our case, the maximum for $f(x)=(s-x)(a+x-s)$ is at

$$
s-x=a+x-s=a / 2,
$$

and this is $b=c$. We conclude that the solution is the isosceles triangle. From all triangles with given perimeter and one fixed side, the isosceles triangle has the maximal area.

Next example is from economics where a certain product is produced in a shape so that the production cost is minimized.

Example 2. Minimizing Area or Cost Minimization

A juice can is to be made in the form of a right circular cylinder and have a volume V. Find the dimensions of the can so that
"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

Let r be the radius and h the height of the can, see diagram.
So the surface area is

$$
A=2 \pi r^{2}+2 \pi r h .
$$

We use the fact that $V=\pi r^{2} h$, which gives $h=V / \pi r^{2}$.
Eliminating h from the surface area gives

$$
A=2 \pi r^{2}+\frac{2 V}{r} .
$$

Therefore, the function that we want to minimize is

$$
A(r)=2 \pi r^{2}+\frac{2 V}{r} \quad r>0 .
$$

To find the critical numbers, we differentiate:

$$
A^{\prime}(r)=4 \pi r-\frac{2 V}{r^{2}}=\frac{2\left(2 \pi r^{3}-V\right)}{r^{2}} .
$$

From $A^{\prime}(r)=0$, we find that the only critical number is
"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^2]| Materials $/$
 equipment
 / digital
 tools /
 software | We use the textbooks from the references. For equipment in
 the classroom we need the usual black board and chalks.
 Digital tools: laptop, projector, smart board.
 The practical problems can be solved without using software -
 calculators are enough. | |
| :--- | :--- | :--- |

[^3]| Consolidat ion | - Use of materials, equipment, digital tools, software by teachers and students;
 - The teacher's discussion with the students through appropriate questions;
 - Independent solving of simple tasks by the students under the supervision of the teacher;
 - Given of examples by the teacher for introducing a new concept in a cooperation and a discussion with the students;
 - Assignment of homework by the teacher with a time limit until the next class | |
| :---: | :---: | :---: |
| Reflections and next steps | | |
| Activities that worked | | Parts to be revisited |
| After the class, the teacher according to his personal perceptions regarding the success of the class fills in this part. | | Through the success of the homework done by the students, questions and discussion at the beginning of the next class, the teacher comes to the conclusion which parts of this class should be revised. |
| References | | |
| J. Stewart: Calculus - Early Transcendentals, Thomson 2008
 M. Lukarevski: Mathematics for computer scientists (in Macedonian), Univ. 'Goce Delcev' Stip, 2019 | | |

[^4]
[^0]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^1]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^2]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^3]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. "

[^4]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

